## **Conformational Analysis by Matrix Photoselection**

## lan R. Dunkin

Department of Pure and Applied Chemistry, University of Strathclyde, Cathedral Street, Glasgow G1 1XL. U.K.

Partial photolysis with plane-polarized light of phenyl azide in N<sub>2</sub> matrices at 12 K yields samples with dichroic i.r. spectra, analysis of which excludes  $C_{2\nu}$  and bisected- $C_s$  geometries for phenyl azide, and suggests a planar- $C_s$  or nearly planar conformation.

Partial photolysis with plane-polarized light of molecules trapped in a rigid medium leads, in favourable circumstances, to preferential decomposition of molecules having a particular orientation. In the resulting sample, the residual molecules of the starting material also have a preferred orientation, so that their vibrational and electronic spectra exhibit linear dichroism. The formation of dichroic samples in this manner is termed photoselection.<sup>1</sup> In the past few years, several papers have appeared describing photoselection of species trapped in low-temperature matrices.<sup>2</sup> In all cases, the species studied have been rigid molecules with at least  $C_{2v}$  symmetry. In this paper, we explore the possibility of using matrix photoselection coupled with i.r. dichroism as a means of determining the conformation of a flexible molecule of lower symmetry.

Phenyl azide (PhN<sub>3</sub>) was chosen as a suitable compound for a variety of reasons. First, there has been considerable recent interest in the matrix photolysis of this and related azides.<sup>3</sup> Secondly, an almost complete vibrational assignment for PhN<sub>3</sub> has been proposed, based on its liquid-phase Raman spectrum.<sup>4</sup> Thirdly, the benzene ring has a collection of well documented i.r. bands, many of which are readily assignable.<sup>5</sup> Finally, the conformations of PhN<sub>3</sub> that need to be considered are limited simply to those attainable by rotation about the C(1)–N(1) bond.

On the assumption of a bent arrangement of C(1)-N(1)-N-

(2), the PhN<sub>3</sub> molecule at its most symmetrical has  $C_s$  symmetry. The two conformations that are possible are: (i) the planar form (1), in which all the atoms lie in a plane that is also the symmetry-plane of the molecule, and (ii) the bisected form (2), in which the plane defined by C(6)-C(1)-C(2) is perpendicular to the plane defined by C(1)-N(1)-N(2), and in which the molecular symmetry-plane bisects the benzene ring through C(1) and C(4). Intermediate conformations have only  $C_1$  symmetry.

In a  $C_{2v}$  monosubstituted benzene, the transition moment vectors of allowed transitions are of A1, B1, or B2 symmetry [(3), (4), or (5), respectively]. If dichroism is induced in a sample of such a compound by photoselection involving an electronic transition of, for example, A<sub>1</sub> symmetry, the resulting i.r. spectrum will be such that the  $A_1$  bands will have dichroism parallel to that of the electronic band ( $I_{\parallel} < I_{\perp}$ ), while the  $B_1$  and  $B_2$  bands will have perpendicular dichroism  $(I_{\perp} < I_{\parallel})$ . When, as in (1) or (2), the symmetry is reduced to  $C_{s}$ , the vibrations divide into only two classes: A' (in-plane) and A'' (out-of-plane). Transition moment vectors of A''vibrations will be rigorously parallel to each other and perpendicular to those of A' vibrations, but transition moment vectors of A' vibrations may be at any angle with respect to each other. As an example, in conformation (1) of  $PhN_3$ , the out-of-plane deformation modes of the benzene ring, corresponding to  $B_1$  vibrations in a  $C_{2v}$  phenyl derivative, will be of A'' symmetry; while in conformation (2) they will be of A'



symmetry, and the A" vibrations will be those corresponding to the  $B_2$  vibrations of a  $C_{2v}$  phenyl derivative. Despite the rigorous division of the vibrations of (1) or (2) into only two symmetry classes, it was hoped that vibrational transition moment vectors in PhN<sub>3</sub> would retain directions more or less corresponding to those in a  $C_{2v}$  molecule. Thus, instead of A<sub>1</sub>,  $B_1$ , and  $B_2$  vibrations that are rigorously mutually perpendicular, there might be sets of more or less longitudinal (3), outof-plane (4), or transverse (5) vibrations that define three roughly perpendicular directions within the molecule. When the symmetry of the molecule is reduced even further to  $C_1$ , there are no longer any symmetry restrictions on the directions of the transition-moment vectors. In the absence of detailed computations, any observed pattern of dichroism in the i.r. spectrum is consistent with  $C_1$  symmetry. Qualitative dichroism observations cannot, therefore, exclude the possibility that the molecule has  $C_1$  symmetry.

With these considerations in mind, we examined the polarized photolysis of  $PhN_3$  isolated in  $N_2$  matrices at 12 K



Figure 1. Part of the dichroic i.r. spectra of PhN<sub>3</sub> in N<sub>2</sub> at 12 K after incomplete photolysis (250 min) with x-polarized light. (--) x-polarized spectrum (parallel), (-) y-polarized spectrum (perpendicular). Each spectrum is a computer average of four scans, and background subtraction has been carried out. Band assignments: I, impurity or overlap of PhN<sub>3</sub> and product bands; P, product bands; others belong to PhN<sub>3</sub>.

Table 1. Frequencies, assignments, and dichroism of selected i.r. absorptions of PhN<sub>3</sub>, following partial, polarized photolysis in N<sub>2</sub> at 12 K

| Phenyl group vibrations                              |                         |                                                                                                             |                        | Azide group vibrations |                                         |            |
|------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------|------------------------|------------------------|-----------------------------------------|------------|
| √cm <sup>-1a</sup>                                   | Assignment <sup>b</sup> | Symmetry type <sup>c</sup>                                                                                  | Dichroism <sup>d</sup> | √/cm <sup>-1a</sup>    | Assignment <sup>e</sup>                 | Dichroisma |
| 1598<br>1589, 1585<br>1496 - 1491                    | 8a<br>b                 | $\begin{array}{c}\mathbf{A_1}\\\mathbf{B_2}\\\mathbf{A}\end{array}$                                         |                        | 2165—2087<br>(7 bands) | v(NNN) <sub>as</sub><br>Fermi resonance | !!         |
| 1490, 1491<br>1457<br>1344, 1337<br>1288, 1270, 1272 | 19a<br>19b<br>14        | $\begin{array}{c} \mathbf{A}_1 \\ \mathbf{B}_2 \\ \mathbf{B}_2 \\ \mathbf{B}_2 \\ \mathbf{B}_2 \end{array}$ | <br>  <br>             | 1305, 1298<br>670      | $\nu(NNN)_{s}$<br>$\delta(NNN)$         | II.        |
| 1288, 1279, 1272<br>1185<br>1176                     | 9a<br>15                | $\begin{array}{c} \mathbf{B_2} \\ \mathbf{A_1} \\ \mathbf{B_2} \\ \mathbf{D_2} \end{array}$                 |                        | 337                    | γ(INININ)                               | Ţ          |
| 1076<br>1026<br>751, 743                             | 186<br>18a<br>11        | $\begin{array}{c} \mathbf{B}_2\\ \mathbf{A}_1\\ \mathbf{B}_1\\ \mathbf{B}_2\end{array}$                     |                        |                        |                                         |            |

<sup>a</sup> Bands, calibrated against polystyrene film, are accurate to within  $\pm 2 \text{ cm}^{-1}$ . <sup>b</sup> Nomenclature of Varsanyi (ref. 5). <sup>c</sup> In a phenyl group of  $C_{2v}$  symmetry. <sup>d</sup> Relative to that of the photoactive electronic absorption, (|| parallel,  $\pm$  perpendicular). <sup>e</sup> Following ref. 4.

(matrix ratio 1:1000).† I.r. spectra (2200-400 cm<sup>-1</sup>) of the matrices resulting from partial photolysis were recorded, with polarizations both parallel and perpendicular to the plane of polarization of the photolysis beam (see Figure 1)<sup>‡</sup> The matrix i.r. spectrum of PhN<sub>3</sub> agreed reasonably closely with the liquid-phase Raman spectrum throughout the region examined but, at present, discussion will be limited to those i.r. bands of the phenyl group which are least sensitive to the nature of the substituent<sup>5</sup> and to four vibrations of the azide group.<sup>4</sup> These bands seem to be the most reliably assigned, and their frequencies and observed dichroism are given in Table 1.§ The most notable result is the fact that the bands corresponding to  $B_2$  modes of a  $C_{2v}$  phenyl group do not all have the same dichroism. This observation excludes the possibility of a conformation having a symmetry plane perpendicular to the benzene ring, *i.e.* conformation (2) and the much less likely  $C_{2v}$  form. The remote possibility of a  $C_{2v}$ structure is also excluded by the fact that the band due to the azide deformation,  $\delta(NNN)$ , has the same dichroism as the azide stretching modes,  $\nu(NNN)_{as}$  and  $\nu(NNN)_{s}$ . Rigorous inferences from the data cannot take us any further. Nevertheless, the complete loss of directional coherence found amongst the modes corresponding to  $B_2$  vibrations in a  $C_{2v}$  phenyl

‡ I.r. spectra were recorded on a Perkin-Elmer PE 684 spectrometer interfaced with a Perkin-Elmer Infrared Data Station. Polarization of the sample beam was achieved by means of a SpecAc aluminium grid polarizer on a KRS-5 substrate.

§ Dichroism was observed for all but the weakest bands of  $PhN_a$ and for some of the product bands. A fuller discussion of the spectra must be deferred, however, to a later publication. group strongly suggests that the conformation of  $PhN_3$  more nearly resembles (1) than (2). This outcome is in accord with the results of Raman studies<sup>6</sup> of  $PhN_3$  and a crystal structure determination for *p*-nitrophenyl azide,<sup>7</sup> both of which indicate planar or nearly planar conformations for these molecules.

The method of matrix photoselection, therefore, is capable of providing some information on the conformations of flexible molecules, although the limitations are severe. In particular, sets of bands with identical symmetry in, for example, a  $C_{2v}$  molecule cannot be relied upon to maintain roughly parallel directions when the symmetry is reduced.

We thank the S.E.R.C. for supporting this work with an equipment grant.

Received, 16th August 1982; Com. 979

## References

- 1 A. C. Albrecht, Prog. React. Kinet., 1970, 5, 301.
- 2 See, for example, the following and references cited therein: J. J. Turner, J. K. Burdett, R. N. Perutz, and M. Poliakoff, *Pure Appl. Chem.*, 1977, **49**, 271; M. S. Baird, I. R. Dunkin, N. Hacker, M. Poliakoff, and J. J. Turner, *J. Am. Chem. Soc.* 1981, **103**, 5190.
- O. L. Chapman and J. P. Le Roux, J. Am. Chem. Soc., 1978, 100, 282; O. L. Chapman, R. S. Sheridan, and J. P. Le Roux, Rec. Trav. Chim. Pays-Bas, 1979, 98, 334; I. R. Dunkin and P. C. P. Thomson, J. Chem. Soc., Chem. Commun., 1980, 499.
- 4 R. Gaufrès and A. El Shahawy, C. R. Hebd. Seances Acad. Sci., Ser. C, 1975, 281, 503.
- 5 G. Varsanyi, 'Vibrational Spectra of Benzene Derivatives,' Academic Press, New York, 1969.
- 6 A. E. Shahawy and R. Gaufrès, J. Chim. Phys. Phys.-Chim. Biol., 1977, 74, 9.
- 7 A. Mugnoli, C. Mariani, and M. Simonetta, Acta Crystallogr., 1965, 19, 367.

<sup>†</sup> Matrix gas mixtures were prepared manometrically and condensed on a CsBr window at 12 K. The photolysis source was a 200 W high-pressure Hg arc, fitted with a water filter and Polacoat 105 UV WMR polarizer on a quartz substrate.